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1.0 INTRODUCTION

The theoretical analysis of exact element patterns from circum-
ferential and radial slots near the tip of a sharply tipped cone has
been completed and presented in the final report on Contract No. NN019-73-C-0127
(Bargeliotes, Kummer, and Villeneuve, 1974). In both cases, the element
patterns have been obtained by summation of the normal mode series
provided by the angular eigenfunctions of thF boundary value problem
expressed in spherical coordinates. Relatively few modes are required
for the convergence of the series for slot locations near the tip of
the cone, the number of modes increasing with increased
distance from the tip. In addition, computational difficulties from
accumulated round-off errors also hinder the applicability of the modal
series program for element locations far from the tip.

The normal mode series may be derived from related integrals
evaluated as a sum of residues taken over the poles of the integrands
(Pridmore~Brown, 1972). This integral represertation of the fields
lends itself to asympotic approximations which allow the separation
of the diffraction field and the geometric optical field. In turn,
the diffracted field may be expressed as a product of some frequency-
independent angular functions or diffraction coefficients, om(e, 0o) »
and a function f(r + a) / (ka) 1/2. Here 65 is the exterior cone
angle, a is the distance from the tip to the slot measured along the
generatrix, and k is the wave number. The geometry is shown in Figure

1. For slots far from the tip this representation of the diffraction

field is better suited for numerical computation than the modal series.




The approximate evaluation of the contour integrals representing

the 8~component of the electric field of a circumferential slot
resulted in explicit expressions of the field in terms of the diffraction
coefficients mentioned above (Pridmore-Brown, 1972). An attempt to
utilize these expressions for the numerical computation of the diffraction
coefficlents and the field itself revealed some inconsistancies or
omissions among the given parameters. In an effort to correct these
deficiencies, the complete derivation of the expressions was undertaken.
Additionally, for a complete pattern analysis or synthesis technique,
similar expressions are also required for the diffraction coefficient
associated with the ¢-polarization.

The integral expressions for the scalar potential functions that
determine the radiation fields due to a cosmdé excitation are of the

form (Pridmore-Brown, 1972)
/ vdv A" (8,6,) 173, (ka)

where the angular factor A 3 (6,8,) is a ratio of assoclated Legendre
functions and the integrals are taken over a hairpin contour enclosing

the positive real axis in the complex v-plane. On displacing the

contour to the right over a large number of poles as shown in Figure

2,we have a finite sum of residues and a contour integral in which the
Legendre functions are replaced by theilr asymptotic representations to
order 1/v with v>> 1. In the finite sum of residues the Bessel function
is replaced by an asymptotic representation, while in the contour integral
its Sommerfeld integral representation is used. The Bessel function

contour (noted as Cy in Figure 3 i1s displaced so as to pass through




the two saddle points at y = 0 and vy = 7 in the complex y-plane. As

noted by Pridmore-Brown, the contribution from the poles that are crossed
in this process and the encountered branch cuts yield the optical and
transition fields. The saddle point integrations give terms proportional
to (ka)-llz. These terms and the finite residue sum are then transformed
into an equivalent modified residue series. The number of terms in
the residue series is then allowed to increase without limit. The
resulting series is summed in the Cesaro sense and represents the
field diffracted by the tip.

It should be noted that in the above method of evaluation of
these integrals (Pridmore-Browu, 1972) the condition ka >>N>> 1 is
imposed. Here ka is the location of the slot relative to the tip of
the cone and N is the number of poles over which the hairpin contour
is shifted to the right. Subsequently, N is allowed to increase without
limit, which requires that ka also increase without limit if the
initial condition ka >>N>> 1 is to be satisfied. In fact it must increase
proportional to N2, Thus, performing the limiting operation would
appear to make all terms but the optical term negligible. Therefore
it is recognized that interpretation of the results obtained here is
not clear. Even so, Pridmore-Brown obtained numerical results for the
8-component of the field that were in very good agreement with results
computed from the modal series even for moderate values of ka. The
exact reason for this good agreement is not yet understood, but should
be investigated further. In addition, the possibility of using a
similar approach, but without letting N approach infinity should be
investigated in an effort to extend the applicability of the results

to even smaller values of ka.



In this report, the analysis of Pridmore-Brown is reviewed, some
typographical errors are corrected and some additional details are
supplied. We shall begin by first giving the formal defining equations
of both components of the electric field in Section 2. We shall
also point out here the necessary corrections and omissions in the supporting
equations leading to the final expression of the 6-component of the
electric field.

In Section 3, the analysis is extended to apply to the ¢-component
of the electric field, resulting in the separation of this field
component into transition and diffraction fields. It is found that,
unlike the 6-component, the ¢-component is not represented by an
optical term, whereas the diffraction coefficients have the same
variation in ka for both components. Throughout the above two sections
we follow very closely the formulation and analysis presented by
Pridmore-Brown (1972) and the companion paper (Pridmore-Brown, 1973).
The same notation will be used throughout unless specifically stated
otherwise. Some algebraic details and transformations associated with
the various integrations will be included in the appendices.

Also during this program, the radiation patterns of circumferential
and radial slot elements 6.22 wavelengths from the tip of a cone were
measured at a frequency of 10.38 GHz. A number of the measured
patterns are shown together with corresponding computed patterns
in Section 4. The computed patterns were obtained from the modal
series computer program. Fxcept for a few discrepancies which are
explained, the agreement between measured and computed patterns is
very good for both the circumferentially and the radially directed

element.
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2.0  GENERAL FORMULATION OF THE ASYMPTOTIC APPROACH

The geometry under consideration is a perfectly conducting conical
surface coinciding with the coordinate surface 9 = 8, of a spherical coor-

dinate system r,8,4 as shown in Fig. 1. A narrow azimuthal slot located

at r = a 1s excited by an alternating voltage

V, cosmé exp(-iwt) (L)

The external field generated by this excitation is given by

E = curl curl (r1;) + k curl (rﬂz) (2)

where ﬂl’ and KZ are scalar potential functions and are given by equations
(3) and (4) of Pridmore-Brown (1972). The field components are obtained

from equation (2), giving

Vv i
Eg = -—fl (2mka) ®  cosmé exp[i(kr-n/4)] Py (3)
where
- ) im? P )
Pg i P19 ~ sin@ sin@ 20 ()
____l__ vdv (] L=V
Plg = =5 ./r 2 AiJ (0,90) i J,, (ka) (3b)
By
S vdy =V F,' (ka) (3c)
PZQ = 211 / \)2_% AZ\)(Q’QO) i \Y)
)
P ml (cos8)
= Yo b
Alv(g’go) -5
Pv-% (cose) (4)




P_T% (cos8)
A, (8,0,) = — - (5)
2v (3/38) P™ (cos8)
v= ®
b
X
3,(x) = (j{g\ J,(x) (6)
/
and
v
Eé = j? V2nka m sinmé exp(i(kr - 7n/4)) Pé (7
where
p = -l + i P (7a)
6  sine 4 7 sing, 24
= & il ~v
VE =
Cy
R vdv_ A, '(8,0.) 1V 3 '(ka) (7¢)
2¢ 2ni ¥ 2v G v
c
v

The integrals are taken over a hairpin contour enclosing the positive
real axis of v > %. (Primes denote derivatives with respect to the argu-
ment or with respect to the first argument in the case of two arguments.
For clarification, we have also added the subscript 8,¢ to denote

quantities corresponding to E9 and Ed' respectively.)

The above expressions may also be obtained by inspection from the
corresponding azimuthal terms in the modal series expressions, noting the
exp(jut) time dependence which has been assumed in our previous reports.

This variation is in contrast to the exp (-iwt) used by Pridmore-Brown.



This difference is accounted for by taking the complex conjugate of the
modal series in our previous reports. In addition, the slot dimension in
the previous reports introduces a constant multiplier to the fields. Both
of these points must be kept in mind in any comparison between our previous

modal series results and the results from the present analysis.

2.1 On the Transition Field of Eg

In this section we shall make the necessary corrections to the different
expressions given by Pridmore-Brown (1972) and in addition derive some
missing quantities necessary for a useful expression of the 6-component. In
the following corrections the numbers of the equations used by Pridmore-Brown

(1972) are retained for convenience. Equation (13) should read

P;TL (cos8)
B, (8:85) = lim(v-vy) A, (8,8) = : (13}
vy GB/HBv) P (cos8,)
n \)_}5 (o} =\,n
Similarly, the residue of A,, at its nth pole is
P-T» (cos@) a3
B, (8,6_) = lim(u-u_) A, (8,8,) = =t
n o n’ 2u 0 2 -m
W (02/58u) Pu_Lz (cos8)
' p=u
n
The expression for ¢n(y,9) below equation (23) should be
O ) BT Lo SO S L PN ST 3 e B (23a)
RS 1n “2n 3n 4n

Equation (26) should be multiplied by (-1).



The expression for the complementary error function below equation (27)

should be
erfc(z) = _ 2 f exp(-t?) dt (27a)
%
z
with asymptotic form
(-z2) =3
erfc(z) = SEpLTE ) + O(Z ) (27b)
1/2
(n) =z

Equation (35) should be multiplied by (-1). 1In equation) (30) the arguments

of the f and g functions should be |u].

In the evaluation of the first-order contour integral, the deformed Cy
contour must also go around the branch cuts., The branch cut contribution
is of comparable magnitude to the rest of the transition field and must be
retained in the final expression of the field. A closed form expression

for the branch cut contribution is given by the author in the second paper

(Pridmore-Brown, 1973). The first-order transition field which is evaluated

for small a now becomes

11‘;1)? = fdy exp(ika cos ) In a?-v + Ié;) (a) H (a)

= ( i;r )1/2 exp (1 (ka - —2—)) U(u) + II(SI]i) (D H (a) (37a)

where H(a) is a unit step function,

j[ dx exp(—xz) In(w-x) -lnw

e . ]

U(u) = _....]:...
/v

10



1
and I;R)(a) represents the contribution from the branch cut. The details
of the above evaluation are included in Appendix A along with further
description of the U(u) function in terms of the plasma dispersion function.

('

The leading terms in the expansion of the function Alv (0,90) of

equation (20) in traveling waves are

1
R : 3 i iy -
R 0.0,y - (qineo) {n_e o B o= B oo

1lv sin@ +

where

34402 op g + Lzim?

The above result of the expansion is used to obtain the complete
first-order transition field which includes the contributions from the

branch cuts corresponding to %0 and %r0- The first-order transition field

is then

(1) 1 [sing Li{ (1) (1) 2r L i(ka-J
“iir T w? (ETn'ég) Pn_Tgg (ay0) Ml g) =ny Tpg (app)=Tn (G5 € 47 %) Uluy)

(38)

h ()
where Ulo = = 010.

2.2 On the Diffracted Field of E_

In the approach used by Pridmore-Brown the diffracted field is given
by the Cesaro sum (Wittaker and Watson, 1944) of the residue series. In
calculating the Cesaro sum, the terms in the residue series are modified )
by adding and subtracting terms whose Cesaro sum can be calculated in

closed form. This procedure results in a closed form sum plus a convergent

11




series that can be summed numerically.

is first expanded into zeroth-order and first-order terms in 1

details of this expansion are shown in Appendix B.

these zeroth-order terms is then

tracted are determined by the following method.

The terms to be added and sub-

'

The function Bln(G,GO)

The

n
-
The Cesaro sum of

L (0)
3 1 [sin8 )\ 2 ( -iv:77n
Q(8,8,) =2 Q,(8,8,) =3 g(sine cos v, (8,-8)e "
| . -1 [sin8 )% [ ive o1uB
(c,1) "~ 400 sin®@ sina sinB 47)
where
o e -
a = 56 (m 90 + 8)
)
PR/ 5
B = 20 ('" +gO = 9)
o
wo= =(m+ )

Similarly, a

R(8,8,) = 2. R (6,0).

closed form for the sum of the first-order terms may be found,

(47a)

The individual terms, Rn(G,GO), in the above seriles are obtained from the

original first-order expansion by replacing the magnitude factor 1/\)n

by 8,/nm, giving

1 sinB, Y
Rh(8,8,) = 7w \sin® ™

sin v
n

(0

(0)

) 0)_

(90—9) —in2 cos vso)(go—e)] « exp(-1 v

(47b)

Substituting (47b) in (47a) and carrying out the indicated summation, we

find

L2

b



R(6,8.) = t (2% : {n (a,8)-gy (B,E) )+ (a,E)+gq (B,E) } (47¢)
»Yo - '2_"' 1 gl ’ gl » 5 nz gl » gl ’

s1inb
where
-iag N
gy (a,E) = -e [1n(2]sinal) p L e )]
gy (B,E) = e 1BE [1n(2]sing|) 1 Brodn™ g. )]
£ = m -
a,B defined below Equation (47) above.

A complete expression of Eé)radiation field in terms of the optical,
transition, and diffraction fields may now be written from the above results

and the results of Pridmore-Brown (1972,1973). Thus,

~cosg L
86 = cos m¢;(.._._°.) [exp(1kR) + T exp(1kR') H(m - 6, -0 +TF ]

sin6
¥ exp[ik(r+a)] cm(e’eo)}
(ka)'s
where 5% - g, L 211 cot(m - en)] Y
v ka

R = r-a cos(e-eo)

R' = r-a cos(6-+6°)

H(a) 1s a step function, (M{a) = 1 for a > 0),d# 0,

ikr (1) (1) %
r - { . g _roika rn (27} 1ka }
[ TF s 1T n_Tgp(a, ) Hlayg) in Lp (ayy)-me FTCa ) =Tn <ka> e Uy, )
o
} In the above equation the symbols have the following meanings:

- 13




r=1(-1)
_ 3 +4m? 1 - 4m?
n, = —Tg ~ cot 8 + - 8 cot 90
I(l) @l = nelka cosa[l+% tan?a] ( 2m1 )35 fika cosu tan o
BR ka cosa 2

T(u)

]
L

) = A
i™ erfe (1'2'*1‘ Vo o ) - Lt—l;:l sgn(u)
itful

u = "‘S'?' ;5
10 m *10
alO = m - 90 = 9 J
a2 = - 90 +8

1 2
U(a) = 7."' dx exp(-x") Ln(w-x) - Lnw

"

o 1ka li in 3
W = 2 o =, "i‘ 11
5 15 © m2 o ‘
0n(8,8) = (2micot8 ) Q(8,8,_) +R(8,8,) +3_ Sy, + sTn6 sTne, > Szn]
n=] n=1

n (]

Sin = % el B,., (8,8,) exp(-ivym) - Q,(8,8,) - Rn(G,QO)

Q, Qn' R, Rn are given by equations (47), (47a), and (47b).

-m
(a%) P"n =y (s09d)

L}
Bln (9’90)

(o) PO

Fvr (coseo)

o

14




m
P (cos@)
5

B

! (cos8,)
Aun() 90 u“ o !5

m

Sk

—m -
Vps» My are the roots of P lfl(coseo) = (0 and (a!aeo) Pv (cos8,),

\)—

respectively, as in the modal series, and

véo) = (nm - n/4 +m n/Z)/Go n=2312,0....

The notation Ln denotes the principal value of the logarithm (largl < 7.

It is seen that the diffraction coefficients cm(e,eo) are explicit
furctiqns of the coordinates 6,60. It is this property of the diffraction
coefficients which makes this analysis attractive for computation of
patterns from slots far away from the tip of the cone.

In numerical calculations the seemingly singular point at o = n/2
of the branch cut function, IB; (a), 1s overcome by using the asymptotic

form of the defining expression. This gives

(1)
; = 2
Ig (@

ika cosa
Te

ka sina

which at n/2 becomes 2n/ka snd can be neglected when compared to other items.

B -

Also, the function T(u) may be alternatively computed by the expression

-

TN)“[fﬂﬂ)+8ﬂub+ﬂiﬁﬂubm(hbj—.ui.]smﬁﬂ

m iu

-

where fdui)andg(h:b are functions related to the Fresnel integrals and have

simple rational approximations [Abramowitz and Stegun, 1964.]

15
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As it was pointed out in the introduction, the above expression of

the diffracted field has been obtained by allowing N to go to w.

lim
N >

(

- Plres E Plsp)'

Pdiff

This limiting process disregrrds the condition ka >> N >> 1 imposed at
the outset, unless ka is also allowed to go to o faster than N. The
field expressions derived by using this limiting process are then used
for relatively small values of ka, ka > 10, with satisfactory results
over most of the range of 8 (Pridmore-Brown, 1972).

At this point an additional comment on the procedure of Pridmore-
Brown is in order. 1In evaluating the zero order integral by the method
of steepest descents he separates the result into a so-called saddle
point contribution and a transition field that results when a pole exists
near the saddle point. The two terms together remain finite when the
pole approaches the saddle point. However, separately, each has a singu-
larity at the saddle point. In performing his Cesdro summation, Pridmore-
Brown argues that the series containing the contributions from the saddle
points gives no contribution to the sum and it is neglected. The remaining
transition field now has a singularity when the pole is at the saddle
point. However, the Cesdro sum of the residue series provides the proper
singularity to cancel the singularity in the transition fields and the
resulting fields remain finite. A similar type of thing happens with
the first order terms as well. Thus, though his diffraction fields and

transition fields each have singularities, the total fields determined

by his method remain finite.




It may be possible, however, to separate the diffraction field from
the optical and the transition fields without the need to let N to to =
by simply adding the non-singular terms of Plsp to the two finite residue
sums. The terms of Plsp containing the singularities, (n = 0 terms), are
grouped with the transition field. 1In this manner it may be possible to
apply the technique to smaller values of ka than would otherwise be

possible. At the same time the singularities in the diffracted field

introduced by the limiting process will no longer be present. This

alternate approach should pe examined further. Also, numerical computations

should be undertaken to verify the study results.

17
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3.0 REPRESENTATIONS OF THFE Ed—COMPONENT
The formal expressions of the d-component of the electric field are
given by equation (7) where the integrals are taken over the hairpin con-

tour enclosing the positive real axis of v, as was done for the F_.-com-

8
ponent. In comparing the form of the integral expressions of this com-

ponent with that of E , we see that the only difference is the interchange

9’
of the differentiation with respect to @ of Alv and sz functions. 1In
view of this similarity, we may proceed with an analysis completely
analogous to Eg as was presented by Pridmore-BRrown (1972) and modified in
Section 2. For brevity, however, we shall only write down the important
end results and definitions, keeping the same basic notation. The nota-
tion and meaning of the various quantities shall be the same as for the

Eg—component, except for the identifying subscript é (for é-component) in

areas where the distinction is necessary for clarity.

3.1 Representation in Terms of a Shifted Contour

As before, we start by shifting the hairpin contour to the right over
N poles, where ka>>N>>1, resulting in a finite sum of N residues and an
integral over the contour Cv shown in Figure 2, In these contour integrals
we expand the angularly dependent functions in powers of %3 retaining terms

up to O(v_l) in the integrand as was done for the Eg-component.

18



Thus

1
LCAYL
: SR | 1im =1 [{22%%) siny | -v v (3.1
11¢Sci 2Ty /v [(sin@) sinwo]i Jv(ka) v ( )
o

Cu
sind \z
P = apd lim i ( 0} cosy v 3'(ka) dv (3.2)
2¢ci 2ri v > \sin® / cosy v
0 0
Cv

i
|
|
where the expansions of A (6,08 ) and A! (9,0 ) are the expressions in
1v ) 2v o '
the brackets and

J (ka)

Al & _\) V - .
3, (ka) = =3, (ka) + = oy CH) (33

From the above it is evident that the Pléci"Will result in a first-order i

contour integral,. P2¢ci’ on the other hand, will result in a zeroth-order
contour integral arising from the first term of (3.3) and a first-order
contour integral from the last two terms of (3.3). The first two terms

of (3.3), however, vary aS‘E% as compared with the other contour integrals

and hence may be neglected. This is also the reason why the second con-

tour integral in the Ee-component goes to zero and does not have any
significant contribution to the transition field. We shall consider this

next order in ka for the Eé—component only so as to gain some insight intn the

significance of each of the terms in the final E¢ expression,

3.2 Zeroth-Order Contour Integral

By expanding i into traveling waves valid for each of the two sec-
cosy,
¥ tions of the Cv contour (Imv> 0, Imv €0) and substituting the Sommerfeld

integral representation of the Bessel function we find for the zero-order |

contour integral

19
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p(O)

4 C n=0

Y 0

where Qn(y,G) is given by Equation (23a) of Section 2.1. For convenience,

we show in Figure 3 the CY contour and the deformed contour passing

through the saddle points. Figure 3 also shows the location of the simple

poles (alo’a20'a30) of the zeroth-order contour integral that must be crossed.

The indicated branch cuts are associated with the singularities (o

0’ a:»o)

of the first-order contour intesrals to be considered in the next section

and are taken parallel to the imaginary axis.

We may now write the field arising from crossing the poles and the zeroth-
order transition field from the Integration along the deformed contour

passing through the saddle points as

b
(0) i SinQQ) { ~ikacos (8,-8) -ikacos (6,-6)
P = fs) v -

2¢c1  2nka \ sin® B tTe o “'H(m-6_-8)

ika ;.
elka T(ulo) }
2 (3.5)

where T(ulo) is defined as before. As in the Eg case, the contributions

from the saddle point at y = 7 for u,_ and u_. cancel one another since

20 30
T (u) = -T (-u). It is interesting to note that these fields differ by

the factor -L from the corresponding fields of the E

g—component.
ka

%
{ sin@ 1 /ﬂ(acosY E 2ol
2éci ——f(sinG)) Xa ¢ 1) Qn(Y’g)dv B8
\Y
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We have purposely considered the terms proportional to (ka)“l so that
we may compare the different types of fields with the corresponding
fields of the @-component. It is immediately evident that the optical
field in this case is not at all significant. Therefore, these terms
must be neglected if the 8-component and the ¢-component are to be

=1
computed to the same order in ka, i.e. (ka) L

3.3 First-Order Contour Integral

In the evaluation of the first-order contour integrals again we

make use of the traveling wave expansion of the function —Il—— and
sin
o
1

" for the shifted hairpin contour C, . In taking the deformed C
cosV¥q

contour through the saddle points we encounter branch points assoclated
with the logarithmic singularities of the exponential integrals. The
(1) (1)
contour integrals associated with J | (ka) in Pl¢ci and P2¢ci give
contributions identical to those of the Eg—component and can be immed-
1)
iately written by analogy. However, the contour integral of P;¢ci

arising from the second factor of (3.3) varies as 1l/ka and need not be

considered further. Thus,

1) 1 sind_\ ) )
P1¢Ci = .:;T—E sing -T IBF. (“10) H(alo) + IBR (‘120)

> i(ka - n/4)
+ I‘"-—— e U(u, ) (3.6)
ka 10

= 0 (8.7

(1)

P
2¢ci
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The only first-order contour integral of P2¢ci which is significant
e (magnitude proportional to (ka)_%) is the one arising from the last
term of (3.3). This contour integral has the form

(1)B ikacosy 1y
ITF = de e e [El (i\)0 (a - v))- El(i\)oa)] . (3.8)

Cy

L differing from the previous first-order contour integrals by the factor
elY in the integrand. The same process of integration through the saddle
b

points at v = 0, ¥ = 7, and around the branch points is carried out as

before, giving

(1)B i (1) (L)
_ -1 [sins,\y o f2r 1(ka-m/y)
P29e1 :ﬁ(sme ) [FIBM(“m)H(“w) * Ipre (%20) FJka 3 Ve o)

-1 (ka-m/y)
_‘fZ.’L é [u; @ )-U"@ )]] (3.9)
ka 20 ¢ 30

It is pointed out that in the above expression we have deleted the phase
i
+_.-—-
factor e — 2ka . The functions U¢(u) and the branch cut contributions

(1)
IBR¢ (a) differ from their counterparts in the Eg-component but have
essentially the same properties. Unlike the case of the Eg—component,

i the above contour integrals through the saddle point at y = 7 for u2
0
and U result in a net contribution to the field since U¢(u) is not
%
an even ‘unction of u and hence U¢(ﬂ20) # U; (@ ). If upon further
30

examination this contribution is found to be insignificant, then these

| —— ww

factors will not be included in the computation of the field.

w——

=]
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3.4 Evaluation of the E¢—Diffracted Field
The diffraction field of the E¢—component is given by the sum of

the residue series,

+ i
sin@

(3.10)

p2¢,res e e e P¢d1ff

The residue serjes P and p2¢res are found from the expansion of

léres ]
the functions Bln(Q, 60) and an(Q, 90), respectively, and the asymptotic

representation of the Bessel functions Jv(ka), Jv+1(ka). Thus,

N \)n -vq
P = B, (8,8 i J k 3 1
Y n§=:1 " S 1n(@+85) o, (ka) (3.11)
n -
N u h ;5
- n__ -un 4 [ x
P2¢>res 2: B (9’90)i dx |\ ka JU (x) (3.12)
n=1 2 Zn n
u_ -k x=ka

where B1n (9,90) and an(Q,Qo) are given by (13) and (13a) in Section 2.1.
Both residue series converge in the ordinary sense. This summation is
accomplished by expanding the coefficients Bln(Q, 90) in powers of 1/vn(0)
and B;n (0,90) in powers of ;'%67 and retaining the leading term in each
expansion. However, on retaiging only terms which vary as (ka)_%, as

in the Eg-component, we are left only with two convergent first-order

series denoted by R1¢(9,90) and R2¢(9,90) and defined below:

N
W
Rip @80 = Ly Rypg(®.8;) (3.13)
N
R24(8:80) = 3~ Rong(e,0,) il
n=1
24



iv (O)n

1 —
where s1n® \ ? sinv (0)(9—9 e D
Ry (9,8,) = ( o) Sl (3.15)
sin®@ n™
and
(0)
-1
sinO\ % siny (® (8-0 ) e ¥n " (3.16)
R, (0,0 ) = o n X :
2n¢ e sin@/ nt

are the individual terms in the two series. The details of the expansion
1)

of Bln(O,Go) and BZn(Q,OO)‘leading to R1n¢‘ Rl¢’ R2n¢’ R2¢ are included

in Appendix B. The diffraction field may be now found by the sum of the

two series as

ei(ka—n/h) -1 ;
(21ka) ? {sin@ [Rl¢(9’°0) +:E:Sln¢] + g;;g‘[R2¢(9,90) +:Z:Szn¢]}

(3.17)

Paiffe™

where

p M
v-1 (cos@)
\)n n2

S = exp(—ivnﬂ) - Rln¢(9’90) (3.18)

)
e, Sy (a/av)Pv"m%(coseo) l,
i n

-m
(3/99) Pun-% (asid)

5 * el n =
Iné uz i . = exp ( iunﬂ) R2n¢(9’9°) (3.19)
n (3 /81189’:’)Pu_;i (cosOo) \
and R1n¢ (6,8,), R2n¢(9,90) are defined by (3.15) and (3.16).
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We also have:

, { sin@o s
; sinGo %
== €) - .} 52
Ryy (8:9,) ¥ (sin@) [gl(a, £) - g;(8 5)] (3.21)
\)‘EO) = (n - % + %) &
o
0
e B m+%x+DH I,
n 2" 9
o

The functions gl(a,f) . gl(B,E) are obtained from gl(a,c),
81 (Bs6) by replacing £ with (£+1). All other quantities have the same
meaning as for the Eg—component and have been defined in Section 2.3.
We are now in a position to express the radiation field of the ¢ ~component
as a sum of transition and diffraction fields as was done for the

Eg-component. In summing the various fields and normalizing to the same

factors as for the Eg-component, we find

L

cos@ [1k(r+a)]

- 0 exp

€¢ im sin (m¢) <— el ) TFy + ] 0m¢(9,90) (3.22)
(ka)

where

271 cot(m=-0) B
€ = >
o ~EBo T

0

ka
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_iﬂ/z 1 2 i(ka-_“.)
exp (1kr) { . (1) k (1) ol ;
TF, = -—1’—2-“—— e P [-r Tpg (o)) Hlagg) + I’ (app) +ryfi e ' Uy )

(1) (1) 7 i(ka - )
BR¢ ((110)- H(alo) + IBR¢ ((120) "I’JE—;{ e 4 U¢ (ulo)

+
7]
s
S
©
[s]
=
—3
-

=
2m

~i(ka - "/4) [R ko
= e [U¢ @,,) Uy (U30)]}

o & i 1 .
°m¢(g'g°) (214 ebudy) [ sinQ[Rl‘b +Zsln¢>] <1nd [R?.cb +ZSZn¢>]]
)

»

=3}

20 " %20

20 L s 020

d30 - T U3O

Also, R1¢' R1n¢' R2¢, R2n¢ are defined by equations (3.13) gthrough (3.106).

Ucb (u) and IBR¢((1) are given in Appendix A. All other quantities have the
same meaning as for the Eg and may be found in Section 2. As for the

Eg-component, for anear m/2 the asymptotic form of (A-12) must be used for

(1)

the numerical computation of IBRcb (¢). This 1is easily shown to be

1) 2 - ol (ka cosa+a)

E I () ;
BR¢ ka sina -1

§




Since this is of order 0(1/ka), the contribution of the branch cut in the
vicinity of a = m/2 can be neglected entirely without affecting the
results significantly. It should be noted that the two diffraction
coefficients of the @ and é-components have the same variations in ka

but in general will have different values at a given point in space.




4.0 MEASURED AND COMPUTED ELEMENT PATTERNS ON A CONE

The computer program which has been developed for conical array
pattern aralysis has been modified and executed on the Control Data
Corporation computer (CDC 6600). The CDC 6600 computer is preferred
because of its greater accuracy and higher speed over the IBM 370/158
computer previously used in the pattern analysis problem.

During the course of the development of the modal series program
the accurate computation of the Associated legendre function P$ (cos®)
was questionable over certain ranges of 8. Specifically, the chosen
expansion was valid for £-< 8<5 % but it was used for computation of

the function for

T < @ <m by first computing PS (cos®) with

v = 7242m. Backward recursion was used to obtain the value of the function
of the desired degree. Some details in checking the accuracy of the
results in both the upper and lower extension limits of applicability

of the expansion are included in the first Quarterly Report

(Bargeliotes, 1974).

The computed patterns, using the first fourteen modes of the modal
series, have been normalized to the largest value computed for both
polarizations for either the circumferential or radial case. Computed
and measured elevation cuts are shown on an extended  -scale to give
a single view of the elevation cuts. Since the cone under study has a

o

10° half-angle, the position of 6=80 was selected for the computed

azimuthal cuts. This corresponds to the broadside of the conical surface.

29



Measurements were made on an experimental 10° half-angle cone at
a frequency of 10.38 GHz with the slots 6.22 wavelengths from the cone
tip. This slot location corresponds to ka = 39 radians from the cone ;
tip for which a complete set of patterns have been computed with the
modal series program. In both the circumferential and the radial case,
the slots were fed by a half height X-band waveguide. Where possible,

computed pattern values are shown on the same scale for comparison. J

4.1 Radiation patterns of circumferential slot,

Figure 4 shows the @-polarized patterns for ¢ = 0° and ¢ = 180°
together with corresponding computed patterns. There 1s excellent
agreement between the measured and computed patterns throughout the
cone tip region and the broadside region where both patterns are quite
uniform. The measured pattern drop-off for § = 0° and @ greater than
140° is due to shadowing at the base of the cone by the absorbent material
in which the cone was set., Similar drop-off is observed in the measured
pattern for 4 = 180° for the same @ values except that this is not as
noticeable since the computed pattern in this region is at a much lower
level relative to the ¢ = g° pattern. Measured O-polarized patterns are
also shown for ¢ = 45°, ¢ = 225° and ¢ = 90°, ¢ = 270° in Figures 5 and
6, respectively. 1In Figure 6 the corresponding computed pattern values
are also shown. There appears to be a 2° difference in the position of
the null between the computed and measured patterns but this is probably
caused by inaccurate alignment between the transmitter and receiving
antennas. This also explains the slight asymmetry in the measured pattern.
The shadowing by the absorbent material for @ greater than 140° is

evident in all measured patterns. The above two patterns also show that
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the pattern level at ¢ = 135° 1s approximately 10 dB below that of 4 = 900.
The d-polarized patterns in elevation are shown in Figures 7 through

9 for the same azimuth positions as for the O polarized patterns. Azimuthal

patterns for both polarizations at 0 = 80° are shown in Figure 10.

Excellent agreement 1is seen between computed and measured patterns of

Figures 9 and 10 considering the fact that computed pattern values were

made every 5 degrees in € and 10 degrees in 6.

4.2 Radiation patterns of radial slot.

The tip section of the 1G° half-angle cone was modified to accommodate
a radial slot 6.22 wavelengths from the cone tip. Thke edges of the wave-
gulde were carefully taped to obtain one-half wavelength at the operating
frequency. A photograph of the cone mode with a radial slot and abscrbent
material surrounding the base of the cone is shown in Fgiure 11.

The computed patterns shown together with the measured patterns
have heen normalized to the largest value computed for both polarizations
using the first fourteen modes of the modal ceries. This largest value
was computed at the field point P(4,0) = P(0°,80°). As expected, this
point is broadside toc the conical surface and lies on the plane normal
to the conical surface and containing the radial axis of the slot element.
For meaningful comparison of measured and computed patterns, the
referenrce level cf the measured patterns was also taken at broadside at
6=0".

Figure 12 shows the ¢~polarized patterns for ¢ = 0° and ¢4 = 180°
together with corresponding computed patterns. There is excellent agree-
ment between the measured and computed patterns throughout the cone tip

region and the broadside region where both patterns are quite broad.
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Fig. 11 Test Model of 10° Half-Angle Cone with
Slot 6. 22A from Tip
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Measured d-polarized patterns are also shown for ¢ 10°, ¢ ~ 190°,

¢ =40°, ¢ - 220°, ¢ - 90° and d = 270° in Figures 13 through 15. Computed
pattern values are also shown in the same figures for comparison. Figure
L5 shows a3 difference in the position of the null between the computed

and measured patterns but this is probably caused by misalignment between
the transmitter and receiving antennas. It would also explain the slight
asymmetry in the measured pattern. The shadowing by the absorbent
material for @ greater than 140" is again evident here. The above figures

o)
and

also show that there is a difference of 4 dB in the maxima of ¢ 0
¢ - 90° patterns, wherecas the pattern maxima at ¢ - 180°%are approximately
14 dB below that at ¢ 0°. As mentioned earlier, the maxima occur at

the broadside to the conical surface.

The @-polarized patterns in elevation are shown in Figures 16 through
19 for the same azimuth positions as for the d-polarized patterns. These
figures clearly show that unlike the patterns of a circumferential slot on
a sumilar cone, the cross-polarization is well below the dominant polar-
ization at the same azimuthal angles. The shadowing by the absorhent
material at the base of the cone is clearly identified in these patterns.

Since the pattern levels of this polarization are approximately 18 dB
below the reference level, the misalignmént of the transmitter and receiver
antennas is also more apparent.

Azimuthal cuts at various angles, including the broadside of the antenna
element, are shown for both polarizations in Figures 20 through 24. From
Figure 21 it is scen that the measured broadside pattern of the d-polariza -
tion exhibits a broad maximum at ¢ = 0° and is in very good agreement with
the computed pattern. As stated earlier, this has been selected as the
reference point for all patterns. In the @-polarized azimuthal cuts, where
the levels are considerably lower than the reference level, the shift of
the null between measured and computed patterns is more apparent. At
other points, however, the agreement between measured and computed
values is very good. The @-polarized pattern levels are in all cases at

least 18 dB below the reference level.
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5. RECOMMENDATIONS FOR FURTHER INVESTIGATIONS

Computed element patterns using the normal mode series computer
program have shown excellent agreement with measurernents on an ex-
perimental model with both types of slots. Using the model series
for the computation of exact patterns the number o6f modes required
for convergence of the series increases as the distance of the slot
location from the tip of the cone increases. Computational difficulties
from accumulated round-off errors may also affect the accuracy and
limit the applicability of the modal series program to element positions
not too far from the cone tip.

We also have now complete expressions of the Ey and Eg radiation
fields in terms of optical, transition and diffraction fields. Furthermore,
it is seen that the diffraction coefficients of both components are only a
function of the angular coordinates and not the location of the radiating
element. The diffraction fields for any element location may then be
found by the product of these diffraction coefficients and the factor con-
taining the information of the location of the radiating element. The
diffraction coefficients need be computed only once, thus eliminating the
repetition of lengthy computations. The optical and transition portions of
the fields, on the other hand, are given in terms of functions that are more
suitable for numerical computation than the modal series expressions.

In order to utilize effectively the results of the above approximate
approach for computation of radiation patterns, the expressions of both
polarizations must first be programmed for use by the digital computer.

The new program should be built in "blocks" as much as possible, so as
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to utilize certain existing computing routines but more importantly to
facilitate the integration with the modal series computer program. Such
an integration of the two computer programs will be necessary since the
approximate expressions, by their nature, fail to yield satisfactory re-
sults in the regions near the cone axis. Also, unlike the modal series,
the asymptotic approach cannot be properly applied to radiating elements
near the tip of the cone. Thus, the combination of the two programs will
tend to complement one another.

Once the newly developed computer programer is tested for general
accuracy and proper behavior in critical regions, it will provide the
means for computing radiation patterns of both polarizations from slots
on a cone. The testing should involve computation of patterns for identi-
cal slot locations that were computed by the modal series and verified by
measurements. In addition to the above numerical analysis, the impli-
cations of the limiting process discussed in Section 2 should be investi-
gated further.

The analysis technique outlined above would allow the computation

of patterns to verify the equivalence principle pattern synthesis technique.

Additionally, the technique could be easily extended to analyze mutual
coupling and impedance of radiators on a cone from a rigorous approach
and provide a check on the results obtained by the geometrical theory ot

diffraction.

55




i d

REFERENCES

Abramowitz, A. and I. A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards (Applied Mathematics
Series 55), Washington, D. C. 1964, P. 302.

Bargeliotes, P. C., W. H. Kummer, and A. T. Villeneuve, 1974,
"Dynamic Impedance Matching in Conformal Arrays, ' Final Re-
port, January 1973 to January 1974, Contract N00019-73-C-0127,
Hughes Aircraft Company.

Bargeliotes, P. C., '"Pattern Synthesis of Conformal Arrays',
Quarterly Report, January 1 to April 1, 1974, Contract
N00019-74-C-0127, Hughes Aircraft Company.

Fried, B. D. and S. D. Conte, The Plasma Dispersion Function,
New York: Academic Press, 1961, p. 3.

Pridmore-Brown, D. C. 1972, "Diffraction Coe fficients for a
Slot-Excited Conical Antenna', IEEE Trans. on Antennas and
Propagation, Vol. AP-20, No. 1, January 1972, pp. 40-49.

Pridmore-Brown, D. C., 1973, "The Transition Field on the
Surface of a Slot-Excited Conical Antenna', IEEE Trans. on
Antennas and Propagation, Vol. AP-21, No. 6, November 1973,
rp. 889-890.

Whittaker, E. T. and G. N. Watson, A Course of Mathmatical
Analysis, New York: The Macmillan Company, 1944, pp. 155-156.

56




P g

3

APPENDIX A

EVALUATION OF CONTOUR INTEGRALS

In the evaluation ~f the first-order integrals we are confronted

with integrals of the following form,

I = f e11~'.a cos Y Uy Bl dy (A-1)
o~y

Cl

Y

In this expression C'Y is the deformed contour (Figure A-1) passing

through the saddle point vy = 0. 1In addition, when evaluating the

contour integral of Eq. 3.8 for small a, the following integral occurs.

B eik a cos Y . iy Lo e gV (A-2)

R
C

y

The first integral may be obtained as a speclal case of the second so
that only the second integral will be discussed here. When a>0 the

deformed contour must include a section along the branch cut. When

®<0 the branch cut lies entirely below the deformed contour and there is
no integration along the branch cut. When a>0 the patt may be subdivided

into three parts as i1llustrated in Figure A-2. The integral may then be

written as follows:

i(ka cos y+y)

/e 1n (a-g—y-) dy = f + f + ][ (A-3)

(€ C Br C
¥ Y1 Y2
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Along CY2 the logarithm of a-y differs by -127 from the value it would ‘have

have if there were no branch cut. Consequently, the integrals along CYl

and CY2 can be treated as an integral taken along both curves as though

there were no branch cut plus an integral along CY The deformed contour

2

integral may now be written in the following form,

i(ka cosy+y) " i(ka cos v +v)
f e In (—)dY = e Ln (&) dy
C ' o=y ; L |

€. €
Y Y1 + Y2
(A-4)

i(ka cos v+ v) i{ka cosy+ v)
+ 2ni e dy + fe In(.2 )dy
a-yY

C Br
Y2

where arg Ln(a-y) 1is restricted between -7 and 7.

The integral over the branch cut is obtained as follows:

a Y

1
i(ka cosy+vy) 5 i(ka cosy+vy) =
I'Br = e Ln (-a-;'Y")dY + e Ln(a‘:‘;‘)dY
1
Y Y} a
i(ka cosy+vy)
+ 127] e dy (A-5a)
o
h
i(kacosy+y) (A-5b)
IBr = {27 e dy
a

where Re Y= @
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The deformed contour may now be written in the following form:

i(kacosy+y) i(kacosy+y)
e In(-2)dY = e In(_% )dy
' o~y Oy

v CY1+CY2

i(k acos Y+7Y)
+1i2n e dy

c

¢
(A-6)

3

where Cy 1s a contour from o vertically to CY2 and then along QYZ as
shown in Figure A-2 ., Since, as Imy *~ =, eikacos Y approaches

zero, for Re y betwean 0 and l:;. s, the contour C; may be deformed to
coincide with the branch cut down to Imy+ - ©, Then the total deformed

contour integral has the following form

In(2)dy = e Ln(.ELJdY
-y o=y

Y C,p + Cpo

i(kacosy+y)
+ iZ‘H/e dy

Bre

/i(kacosy+y) i[kacosyﬂ]
e
t

c

(A-7)

where the subscript Br, indicates a vertical path along the branch cut
: froma toa- 1o,
1 (1)

The branch cut integral, denoted by IBr¢ » may be obtained as

follows.

- Let a new variable y be defined by the following relation:

Yy=a-1y (A-8)




Then Ip, takes on the following form:

) F 1ka cosy 1y

I a) = 27 e - dy. =

Bro (a) f e 'dy (A-9)
0

where y= (a - 1y).

On using the relationships cos(a - iy) = cos acoshy + 1 sinasinhy

sinh y~ vy

coshy =1+ y2/2 » the following expression results:

) i(kacosa+a) 1%8— cosa[yz + 1 2tan a'vy] (A-10)
(a) = 21 e e

T
dy

Bt‘¢ 0

where

tan a' = tana - —
kacosa

which on completing the square in the exponential becomes

ka
(1) ; i(k a cos a+a+-—2— cos a tan? a')
I (u) = 27 ¢

Br¢

. i kacosa [y + 1 tan a']? . -

Asens (A-11)
e dy

0

o #

p-—h-l-i_
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The integral in (A-11) can be put into the form of 2 complementary

error function integral by the following transformation:

-t?2 = 1ka cogqfy41 tana' }?

2
t = \’._._._.lka ;‘i’s Hy+ 1 tand' ]
ka cos a dy
V 21

dt

giving
f 3 —.ﬂ'_ e—tz dt
0 "V ka cosa
/ika cosa' tana'’
2
and

(1) i(kacosa+ o +£28—- cos a tan?a'- /1)
= 4
IBr¢ (a) mie

‘/ika cos a tana' (A-12)
27 erfc
. 2

k acosaq
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Only the integral over C_ + C remains to be evaluated. Let v' be

Y
1 Y2
the real part of vy and let y" be the imaginary part of y. Then, on

vl Y2 sinh y" = - tan y'
To perform the evaluation the following substitution 1s made
|)1/2

v = sin v' / (cos ¥

Then on C + C the following relationships hold
Y1 Y2

/i 2 |1/ -
Y = sin-l(v[ Y—-:—-/f-—l—] )-i sinh 1 v —-——-——2————— /2

5

(V vh+ 4 _v2)3/2
L | 4 P
dv (A-13b)

dy = 1 -
VET— <vl‘ + 4 w2V + 4)

{ka cosY ika -kav? (A-13c)
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2
-ka Vv
If ka 1s large then e e is very small except when v is near

Then Eq. (A-13a and b) reduce to
-1 I
4
Y= ¢ V2 v

-iL
dY ~ e 4 V2 av

If the additional substitutions

x
v = vka

I /_2__ L
a=ei[‘ ka ¥ \/E';u

are used, the following expression results

i(kacosy+y)
[e Ln(-2) dy
a-y

C . %G SAPPEL ©
L | | 1[ka-1b :] -(x-1b)2
ka © uis ¢ Ln (¥_ydx
m J o
.
L
b = $
where 2ka

64
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(A-18)

(A-15)




Let U¢(u) be defined as follows:

: -(x-1b)2
U " - B L £ d A-16¢
¢(U) = _: n(w-x) X ( 1)
1 [ -(x-1b)2
U¢(u) = )% -[ e Ln(w-x) - Ln (w) (A-16b)

When a<0 the defecrmed contour does not deviate about a branch cut.

In that case, i.e, when Im w< 0 only U¢(u) contributes. It is necessary,
therefore, to determine methods for evaluating U¢(u). Because of
characteristics of the logarithm, different series expansions must he
used for w in the upper half of the complex plane and for w in the lower
half of the complex plane. There will be a discontinuity as w crosses
the real axis. To determine the various expansions consider the integral

portion of Eq. (A-16b).

1 % -(x-1b)?
Fb(w) = J% -[;)e Ln (w-x)dx (A-17)
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This function is analytic in the upper half-plane and in the lower half-
plane. The upper half-plane will be considered first. If Im(w) is
greater than zero Fb(w) is differentiable and it is possible to write

the following expression

W

F (w) = F (de) + Fy (y)dy (A-18)
b b b
ie
where € is a positive real number and the prime denotes differentiation
with respect to w. The term F' (w) 1s given by the following expression:

= 2
~-(x-ib
oo =-b f Y

dx Imw>0 (A-19)

For w in the upper half-plane the following expression is valid.

T f g1y Im w>0 (A-20)

On substituting this expression into Eq. (A-19), reversing the order

of integration, the following expression is obtained:

~(w-1b)2

Fé (w) = -1i/m e l} - erf (-i[ w—ib])] Imw>0 (A-21)
—(w—ib)2 (Wbib)2n2n+l
iy e = T + (w—ib)E:( l)nl 3°5++(2nt1) Imw>0  (A-22)

n=0

66



e T T I

This function 1s analytic in the entire complex plane including w = 0.

In Eq. (A-18) the lower limit of the integral may be set equal to zero

and F (ie) may be replaced by Fb(10+) where

Fp (10 = lim By (16)
£+0

This limit is given by the following expression

F, (101) =

3

Y —(x+ib)2 —(x-1b)?
—1-_ ‘[
(e

0

and is obtained using the condition - "<arg lnz <m,

+e ) 1nxdx+i-1"£

(A-23)

[1+erf(ib)]  (A-24)

The integral can

be evaluated numerically. For such an evaluation an integration by

parts is first performed to remove the logarithmic singularity. The

resulting expression f{s as follows:
F(10%) = 1(b) + 1 % [1 + erf (ib)]

where

/T

(A-25)

1 [ ~(x+1b)? - (x-1b)?
I(b) = = f [e +e J1n x dx
0

¥ - (x+1b)? -(x-1b)2

=

0
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On using Eq. (A-25) and integrating Eq. (A-22) the following expression

for Fb(w) is obtained when w 18 in the upper half-plane.

© n+2
DM u-15) = (1p) "

Fy(w) = I(b) + 1 %-[1 - erf (w-1b) ]+ 2 1:3:5+++(2n+l) (n+l) Im w>0
n=

(A-26)

If w is in the lower half-plane then instead of Eq. (A-20) the following

relationship is used.

1(x-w)y
A=y e dy Im w< O (A-27)

If an analysis is carried through in a manner similar to the preceding

one the following expression results for Fb(w) in the lower half-plane.

- 4]

(1)) 27*1_ (1) 20*2] on
Fy ) = I(0) - 1 7 [1-erf(w-1b)] + ZO 135+« (nt1) (otD) o0 <0
n‘

(A-28)

The function U¢(u) and U(u) are then given by the following expressions

U¢(u) = Fb(w) - Ilnw (A-29)
U(u) = 1lim U¢(u) (A-30)
b+ 0
68
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It may be shown that U(u) is an even function of u. In addition

1im I(b) = - —g- (A-31)
b+ 0

where C is Euler's constant.
C = 0.577215665... (A-32)

When Im w >0 the branch cut integral must be added. When Im w< O

there is no branch cut integral. Egs. (A-26) and (A-28) permit computation
of U¢(u) for reasonably small values of |w - ib|. For large values of

|w - ibi an asymptotic expansion is desired. Such an expansion can be
obtained directly from the integral expression. To accomplish this

expansion rewrite Eq. (A-16b) in the following form:

2
Uy () =/-11:_ f e~ P 1 ((w-1b) - (x-1b)dx -Ln w  (A-33)

-0

As long as w - ib is not pure imaginary, then as |w-ib| increases without
1imit, the main contribution to the contour integral is from U¢(u). In
turn, the main contribution of U¢(u) will come from the region where

Re(x-ib) 1s a minimum, i.e., where x=Re b<< |w-1b|. Then the
x-1ib
w=1b
may be integrated term-by-term. This process leads to the following

logarithm may be expanded in powers of and the resulting expression

expression:

U¢(u) * Ln (w=-ib) - Ln (w) -

~ Ln (w=1ib) - Ln(w) - Z 1+3++++(2n-1)
=1 2n(w-ib)2M2n




=gl

When b = 0 the following expansion for U(u) results:

e = T 1:3°° - (2n-1) lw| + = (A-35)

n=l oy o20p"

The total integral may then be written as follows:

fei [ka cos v + 1v]

C 1n ~% dy
Y a-Y
(A-36)
2 7
= IBR (a) H (a) - ’i.?; e Ug (w)

For large values of ka the b? in the exponent may be omitted.

An alternative derivation of the contour integral in which the
branch cut is taken from o along the negative real axis results in

a slightly different expansion for the integral valid for o sufficiently

small that cos a 1 - a?/2, The expansion is as follows:
i(ka cos y+y)
/e In (%) dy
ay
C'
Y
5= 1(ka - ib%- D)
~" Via © y [T(b) -1 2 [V - erf (w-ib)] (A-37)
ka

w0

5 (D" [(w-1p)20+2. (4p) 20427 20 _ 35 ]
Z 1352+ (2n+l) (n+l) —I

n=0

This expression is valid for Im (w) both positive and negative and agrees

with the previous results as w+0.
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When @ {s near the saddle point at y=5 then the integral of interest

is as follows.

1[ ka cos y + y]
1= e 1n (E:l dy (A-38)
u—y
Cl
Y

where CY passes upward through the saddle point at m, This integral

leads to the following integrals

[

f 1[ka cos a cosh y + 1 sin o sinh y] 1(a- 1y)
I =2n e

e dy H(n—u)
- 0O *
' *2 - 1 m"(X‘.‘ib ) —f
‘/_2." -i(ka - b - %) [-,-%f /; Lo (= )dx]
+ — 2 ¥ =
ka =5

(A-39,

2
Thid \/?;r “L(ka - 1" - {') x, .
= - IBR¢(u) H(&)- = ® U¢( )

where

ol
2}
B
i
Q

el
|

(n - a)

il
2 « "o

g
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APPLENDIX B

EXPANSION OF B'ln (o, Oo), (0 0 ), B‘ (O ) )

Fxpansion of Bfn (9, 00):

We begin with the asymptotic representation of Legendre fuactions:

P i(cosG)_ ( )/ﬁu-m-r’{gmy = == “"7 cot d coscy} (B-1)

8U
where

msing

y = vé -+ (l—ZM)—E—

Equation (1 3) then becomes

Bnln(g»go) =(Mg_)i '{V sy _ 3*’"’"'.2 coto sinY }

Sin @ 6o cos g, Yo 8 Cos Yo (B-2)

First-order and second-order roots of Pv 1 (cos @) = 0 are then found
2

as follows:

First-order Roots

smy, = O , :'J_ nir
La) = =k min 20 2 T2
"{1 ) ( n 10 + 2 ) 9. ¥ n ’ 3; (b- )
Sccond-order Roots
; | - 4m?
siny, = *T cotd cosy,
g8 v
fan = UE= sz te =
LFO 8 u'(‘o’ (o (-] € (B"4)
By taking a Taylor expansion of tan wo about d’o“) = nm,
we find
) (o) €
4, = ¥ s B-5)
" (] ¥ B, (

The desired expansions of ——-—L and sin ¢ which appear in B' (0, 90)
s:// cos y o

in terms of first-order and second-order roots are found by taking

Y= - l,/lo-l l,//O. Then

)
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y -y, = »8 +(:-—2m)il - V6 —(1-2m L

= w7 (6-8) + €(F-) (B-6)

pagrs WIS (B-7)

cosy = cos(@ o) oSy, ~ SM(¢-Yo) S
n
(-1 [cosye-0y - eg sin 5 ] (B-5)

where we have taken sinexe¢ and cos¢x 1 since ¢+0.

Similarly, we find

siny = sm{WY-Yo) cosy, + cos(w-¢,) 5iNYe
= 0" [sing?e-8,) =+ c-.g: cos 4" (0-6.) | (B-9)
cosy, = cos[ nn + €] = (—I)n (B-10)

With (B-8), (B-9), and (B-10) in (B-2) and the asymptotic representa-
tion of the Bessel function the terms in the residue series approach the
following values in terms of the first-order and second-order roots,

v (o) and v (]). Thus,
n n

2“' b, (6,6,) i J;zn(ka) (21ka)’? eﬂ(m'ﬁz)
b-%

-2,
ad e r] sin . 7(0-6,) L 9 "
ke n>>) (B-11)
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. (o) (3 o (o{n
StV = ‘5‘)" -1 n 4 g
- e 4 = @ [n = 1 ‘é;"]

where

1, = L=2m' 1 cot,
2 §

Substituting (B-12) in (B-11) and retaining the zeroth-order and first-

order terms in l/un, the right-hand side of (B-11) becomes

(Oh

; v ) -7 4,
il (_s_m_gh)/? cos 4 °(0-8) e
go 5'\"\ 2]

. [}
-1

R : (o)
o '_’qrg'[r]'smu,. (9,-9) -772cosuh°(9°-9)]e (B-13)

n>>|

The {irst term in the braces gives Qn(O,OO) while the last two

terms give Rn(O, Oo) after replacing the coefficient 1 by 0o

o 'rr
Vn( ) =

Expansion of Bln(O, 00)

On using (B-1) in (13) of Section 2, and dropping higher order terms

inl/v , we find
S BT sin 0 _\ 3 siny
In*"’ o) “\sin 0

L4
00 cos g
tan [{I
(1-4m2)[cot0 coty +cot@ tan s | - 4(142m)7p o
0 0 e} 0
8v

of 1 -~
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,g:cofac] = é [ - ;}‘:,] (B-12)

(B-14)




L sy

Substituting (B-9) and (B-10) for sinyy and cos ¢;0, respectively,

i
B (0.0) o (sin9\2 1 [sin vy D@-0)+ @m2-1) cos v, (a-09] (B-15)
In 0 sin @ QO 8 v (o]
n

If we now use the asymptotic representation of the Bessel function, we

can express the nth term of the residue series in terms of the first-

(o)
n

order roots, , resulting in

v - 1 - ka - 17/4)
~ n .. n 2 1 ( a
les (O,GO) ~ 3 Bln(0.0o)x J,p(ka) (2mka)? e
v T-1/4
n
' ;o (0) '
2 LYIE -1t 1
N st_o ‘zsmul(lo) (O-OO) e n (B-16)
~ \'sin® e
where v (0) 2 nm_ has been used in the magnitude factor. The above
n 6o B o
)

expression may be summed to give an approximate closed form, RM(Q, 00),

as follows:

[

iv (0)17

0 @©  ss5ing sin v (o) (6-6) e 'Wn
quS(e’eo) ZlRlnd(O’eo) :Z< 0) - .
n=

nszl

sin @ nw

8

()
1 sin 0\ l[e-i v ©hn -0 +0)__"t¥n Pme “0'9)]
T2 (sine ] nz; n

1

i (Si“’o)”' [alare) - (p.00] (B-17)

2w sin 6

with g]( gy B g gz( p , ¢ ) defined below equation (47-c).

%




i '
Expansion of an (e, 0 0)

On using (B-1) in (13a) of Section (2) and dropping higher order terms

inl/u¢ , we find

: sin @ 1
BZ(B,O )y = - (-fw(yo——) —9———-——-—-——-—C(.): i »
n o sin 051 l//o
cot U
2 1y ™ °
[l_(3+4m ) cotetany +eote coty ot 8(m-73) *30““](}3_18)
8 u "

We now find the first-order and second-order roots of (d/ dv 0) P_,ﬁn 1(cos t)o)
-2

0, by differentiating (B-1) and setting the result equal to zero. Thus,

2

ey LT 3+4m% cot® sing = 0 (B-19)

2 . 2 B 8 = 9

sin 908u
or
2 [

coty = €f|1 - 1-4m = g (B-20)

© Rl

pTsin 0

First-order root:

Setting ¢ = 0, cot d/o = 0 when wo(l) =(2n+t)m giving

) p=1, 2, ... (B-21)

L
2 9

(¢]
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Second-order root:

(1)

By expanding cot ¢ A in a Taylor series about ¢ o ' We find from (B-19)
1 _ 2 (1) (2) _ 1, _¢ J
cot 11/0 csc (//0 ( (//o ¥ o ) =€ (B-22)
and (2) = ¢ (1) + € since cot Y (1)—0 0. Then,
o ) o
(2) 3 = 2 {
by eyt (1-2m) = (2n +1) 5 t €
(2) (O
ox g “a T (B-23)
To find expansions of i.cﬁ—(y— and Sin v in terms of the first-order
sin t//o sin ¢ ‘

and second-order roots, again take ¥ = ¢ - (//o + (//0. Then,

(o) e’ ‘
B (0= @) ¥ == (8 G5 (B-24) |
fe) 1

g i
(//0 = (2n+1)--2- + € = k—z- + € ) K= el o (B-25)

Using (B-24), (B-25) and the fact that ¢ and ¢’ are small, we find

cos ¢ = —sinkz11 {sin #r(lo) (8.=8,) + € 'g' Cos“n(O)(e- 80)} 5 =2

(o]
sin ¢ = sin k%{cosun(o)(e- eo) - € % sinpn(o)(e - eo)} (B-27)
(o]
N sin ¢ _ = sin ((2n+1)12r—+€) et (B-28)

T4




Using the results of (B-26), (B-27), and B-28, we find

. -
. . ’ ;Mg 1 L _i(kat X
ug_l_ 2n(8s 8 ) 5;[(1%)2 J#n(X)] (2nka)?e ks 4
n 4 (B-29)
. 3 (0) ~2p
L sm()o z sinp(o)(()-())+'_l_n cos u_ (9-0)]|1 g
P~ : n (o} (o) '3 . n o
sin @ (0)0 o
Ka 9, 5
(3 + 4m2) cotf
We also take )
] g O &
. Z#n _ 1(/~Ln 3 0 )™
i = ® &
-iu (O)Tr '
n €
AT [1 - i-——Tf:l
(o) ?
-1 'u'n ™ i (B-30)
~ e [1 e ) :l
,un(o) 4
where
m

= 2
My = ———800 (3 +4m”~) cot 0,-

Substituting (B-30) in (B~29) and retaining oniy the two lowest-order

terms in —,7—1-(-63 » we have for the right-hand side of (B-27)
n
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—iun(o)‘n' sin 00 2 1 sin }.Ln(o)(o- 90)
= sin 6 'y (0) (B-31)
o ,'Ln
_L_—Z' ['r)3 cospn(o)(()-Oo) = il g sin,u.n(o)(o- 00)] n>>1
(un(o))

After replacing the coefficient l/p,n(o) by 8 _/nm, the first term
in the braces is sumed to give a closed form approximation,

de) (0, 00), while the last two terms are neglected. Thus,

3 Zm im0, \% sinu p-g e

- L2 sin sinu - e
R2¢(0, 00) Zlend’(o’ 00) 1 <sin 00> :'n' =

n= n=

-1 sin 00 % ~ 1 -‘i#n(o)(ﬂ-00+0) —i,un(o)(n'+ 00-9)]
" Zmi\ siné ZK 3 -e

=]

i sinOO 2 ‘

“2m\sin@ [gl(ao £)-g <B,E)] (B-32)

where gl(a ), gl(B, Z) are obtained from gl(a, £), gz(ﬁ,f) by

replacing ¢ with (£+1).
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